Scattered manifold-valued data approximation

نویسندگان

  • Philipp Grohs
  • Markus Sprecher
  • Thomas Yu
چکیده

We consider the problem of approximating a function f from an Euclidean domain to a manifold M by scattered samples [Formula: see text], where the data sites [Formula: see text] are assumed to be locally close but can otherwise be far apart points scattered throughout the domain. We introduce a natural approximant based on combining the moving least square method and the Karcher mean. We prove that the proposed approximant inherits the accuracy order and the smoothness from its linear counterpart. The analysis also tells us that the use of Karcher's mean (dependent on a Riemannian metric and the associated exponential map) is inessential and one can replace it by a more general notion of 'center of mass' based on a general retraction on the manifold. Consequently, we can substitute the Karcher mean by a more computationally efficient mean. We illustrate our work with numerical results which confirm our theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifolds' Projective Approximation Using The Moving Least-Squares (MMLS)

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and non-linear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overc...

متن کامل

Approximation Order Equivalence Properties of Manifold-Valued Data Subdivision Schemes

There has been an emerging interest in developing an approximation theory for manifold-valued functions. In this paper, we address the following fundamental problem: Let M be a manifold with a metric d. For each smoothness factor r > 0 and approximation order R > 0, is there an approximation operator Ah = Ah;r,R that maps samples of any f : R→ M on a grid of size h to an approximant fh = Ah(f |...

متن کامل

Universal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications

It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy.  A formula to compute the lower upper bounds on the number  of interval-valued fuzzy sets needed to achieve a pre-specified approximation  accuracy for an arbitrary multivariate con...

متن کامل

Smooth Approximation of Lipschitz Projections

We show that any Lipschitz projection-valued function p on a connected closed Riemannian manifold can be approximated uniformly by smooth projection-valued functions q with Lipschitz constant close to that of p. This answers a question of Rieffel.

متن کامل

Adaptive Modeling of Dense Scattered Volumetric and Manifold Data

In this paper, we propose a technique to approximate a dense set of volumetric scattered scalar values with a C 1-continuous Bernstein-B ezier piecewise-polynomial function of low degree. We also present an algorithm to model data scattered over the unknown surface of a 3D object. The manifold data reconstruction problem is reduced to volumetric data modeling, by deening a signed-distance funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2017